Oblivious Algorithms for Multicores and Network of Processors

R. Chowdhury, F. Silvestri, B. Blakeley, V. Ramachandran

Best paper in the algorithmic track
Multicore platforms

● Multicores:
 ● Default desktop configuration
 ● Collection of cores on a chip communicating through a cache hierarchy under a shared memory.

● Some models in literature:
 ● The simpler: one private/shared cache
 ● Towards a hierarchy of caches ...
 ● Each core with a private cache, sharing a main memory through a shared cache [Blelloch et al. 2008]
 ● Multi-BSP: mult-level, which uses latency and gap in a BSP manner [Valiant 2008]
Multicore-obliviousness

- Issues of a multicore algorithm
 - Caching
 - Shared-memory parallelism

- Wide ranges of machine parameters:
 - Different core numbers: few, dozen, hundreds,...
 - Different memory hierarchies: level number, cache size, block length,...
 - Portability issues → multicore-obliviousness!

- Can we use previous approaches?
Oblivious approaches

- Cache-Oblivious (C.O.) Algorithms
 - Memory hierarchy
 - Single processor
- Network-Oblivious (N.O.) Algorithms
 - Distributed memory machines
 - Point-to-point communications
 - No memory hierarchy
 - Synchronous
- They are not suitable for multicores
Our results

- A hierarchical multi-level caching model (HM) for multicores
- Definition of multicore-oblivious (M.O.) algorithms
 - M.O. algorithms have hints for the online scheduler
- M.O. algorithms for:
 - Matrix transposition, FFT, Sorting
 - Gaussian Elimination Paradigm
 - List ranking
 - Connected components and other graph problems
- Relations between M.O. and N.O. algorithms
The HM model

- Collection of \(p \) cores
- \(h-1 \) cache levels and one arbitrary large main memory
- \(q_i \) caches at level \(i \):
 - \(C_i \) cache size, \(B_i \) block length, \(q_{h-1} = 1, q_1 = 1 \)
- **Shadow** of level-\(i \) cache \(L \):
 - Cores that share \(L \)
 - All level-\(j \) (\(j < i \)) caches between \(L \) and cores
The HM model (2)

- A task is **anchored** to cache L
 - If it satisfies space requirements
 - The task and its subtasks are solved by cores in the shadow of L
- Parallelism is expressed by
 - **parallel for** (*pfor*); (e.g. matrix transposition)
 - **Fork/join**; (e.g. matrix multiplication)
- Algorithm performance evaluation:
 - Parallel time complexity: number of executed parallel steps
 - Cache complexity: maximum number of misses of any single cache (one for each level)
Multicore-Oblivious algorithms

- Algorithms that do **not** use multicore parameters
 - Basically, a PRAM algorithm
- Algorithms provide (oblivious) **hints** to the run-time scheduler
 - Provide help on how to schedule parallel tasks
 - Improve performances
- Three types of hints:
 - **Coarse-grained contiguous** (CGC) (used in matrix transposition)
 - **Space-bounded** (SB) (used in GEP)
 - **CGC on SBA** (CGC→SB): is a combination of previous two (used in FFT and sorting)
CGC

- Used for scheduling a sorted collection of parallel subtasks
 - e.g., pfor
- CGC:
 - splits the tasks into contiguous chunks of equal size (> B_1)
 - distributes contiguous chunks across contiguous cores
- E.g.: M.O. matrix transposition
 - consists of two pfor's, as in the N.O. algorithm
 - $O(n^2/p + B_1)$ optimal parallel time complexity
 - $O(n^2/(q_i B_i) + B_i)$ optimal cache complexity at level i
SB

- Each task \(t \) provides an upper bound \(S(t) \) on the space used by its sub-tasks.

- When a task anchored in the level-\(i \) cache \(L \) forks a sub-task \(t' \), \(t' \) is anchored in:
 - \(L \) if \(C_{i-1} < S(t') \leq C_i \)
 - \(L' \) where \(L' \) is a level-\(k \) cache (\(k < i \)), \(C_{k-1} < S(t') \leq C_k \), and \(L' \) is in the shadow of \(L \).

- Idea: if each task and its sub-tasks are executed by cores that share the same level-\(i \), then only \(O(S(t)/B_i) \) misses are required at level-\(i \).

- Used for forking a constant number of tasks.

- The M.O. algorithm for GEP uses SB (more later).
CGC→SB

- Combination of previous two hints
- Used when a task forks a large number of sub-tasks
- Sub-tasks are evenly distributed across caches at a suitable lower level in order to fully exploit parallelism
 - Cache size sufficiently large for the task
 - Parallelism exploited
- CGC→SB is used for the FFT of n nodes (\sqrt{n} subtasks)
 - $O(n/p \log n + B_i)$ optimal parallel time
 - $O((n/(q_i B_i) \log_{C_i} n) \text{ optimal cache complexity for each level})$
- Similar for sorting
GEP

- **Gaussian Elimination Paradigm (GEP):** a paradigm based on three nested loops of n iterations each

```plaintext
Input: $n \times n$ matrix $x$, function $f : \mathcal{S} \times \mathcal{S} \times \mathcal{S} \times \mathcal{S} \rightarrow \mathcal{S}$, set $\Sigma_f$ of triplets $\langle i, j, k \rangle$, with $i, j, k \in [0, n)$.  
Output: transformation of $x$ defined by $f$ and $\Sigma_f$.

1: for $k \leftarrow 0$ to $n - 1$ do  
2:     for $i \leftarrow 0$ to $n - 1$ do  
3:         for $j \leftarrow 0$ to $n - 1$ do  
4:             if $\langle i, j, k \rangle \in \Sigma_f$ then  
5:                 $x[i, j] \leftarrow f(x[i, j], x[i, k], x[k, j], x[k, k])$
```

- Solves many fundamental problems:
 - Matrix multiplication
 - Floyd-Warshall's APSP
 - Gaussian Elimination & LU decomposition without pivoting
I-GEP

- Solved by the C.O. algorithm I-GEP
- Parallelized for a 2-level HM in an aware way
- I-GEP solves correctly and efficiently almost all GEP computations
 - C-GEP: extension of I-GEP that solves correctly any GEP computations
- I-GEP consists of 4 functions A, B, C, D that call themselves recursively
The M.O. algorithm for GEP:

- follows from the parallel version of I-GEP using the SB hint
- \(O(n^3/p) \) optimal parallel time complexity
- \(O(n^3/(q_i B_i \sqrt{C_i})) \) optimal cache complexity for each level
- M.O. translates into an optimal N.O. algorithm as well:
 - Some changes due to concurrent reads (not in the N.O. framework)
List Ranking

- **Problem**: given a list of n nodes, determining the rank of each node

- M.O. algorithm based on ideas of external memory algorithms:
 - Determining an independent set I of the nodes
 - Contract the list by removing I
 - Solve the problem on the contracted list
 - Extend the solution to the removed nodes

- **Main problem**: finding the independent set
 - Use $\log \log n$ coloring
 - $O(1)$ sorts and scans with the CGC and CGC-SB hints
List Ranking (2)

- Complexities:
 - $O(n/(q_i B_i) \log C_i n + (\log \log n)^2 \log(n / B_i))$ cache complexity
 - $O(n \log n / p)$ time complexity
- Using the CGC and CGC→SB hints, we obtain M.O. algorithms for
 - Connected components
 - Euler tour
 - …
- These algorithms translate into N.O. algorithms as well
M.O. vs N.O.

- The M.O. algorithms for matrix transposition and FFT are based on the N.O. ones
- The N.O. for GEP and list ranking are based on the previous M.O. algorithms
- From N.O. to M.O.
 - From message passing to shared-memory
 - Exploit locality in each cache level (not so hard!)
- From M.O. to N.O.
 - Move from shared-memory to message passing
 - No concurrent read (not so easy!)
Future work

• Develop other M.O. algorithms
• Do we need other hints?
• What happen if we limit the set of hints? Impossibility results?
• Improve relations between N.O. and M.O. (useful in networks of multicores)
• Missing an optimality theorem as in the C.O. and N.O approaches
QUESTIONS?